漳州防爆矿用变压器造价
从变压器的工作原理可知,电流从一次绕组进去,从二次绕组流出。由于输入的交流电的电流方向不断改变,就会产生一个和电流同步变化的磁场。由于磁场的大小与方向不断改变,从而在次级线圈内感应出电流来。因为在每一圈线圈上的电压都相等,所以,次级线圈圈数越多,从次级线圈输出的电压就越高。
式中:E--感应电势有效值m--主磁通大值由于二次绕组与一次绕组匝数不同,感应电势E1和E2大小也不同,当略去内阻抗压降后,电压1和2大小也就不同。当变压器二次侧空载时,一次侧仅流过主磁通的电流(Í0),这个电流称为激磁电流。当二次侧加负载流过负载电流2时,也在铁芯中产生磁通,力图改变主磁通,但一次电压不变时,主磁通是不变的,一次侧就要流过两部分电流,一部分为激磁电流0,一部分为用来平衡2,所以这部分电流随着2变化而变化。当电流乘以匝数时,就是磁势。
电磁感应强度一般也称为磁感应强度。由于在真空中磁感应强度与磁场强度在数值上相等,因此,磁感应强度在真空中的定义与磁场强度在真空中的定义是相同的。所不同的是磁场强度H与介质的属性无关,而磁感应强度B却与介质的属性有关。这里还需要强调指出,用来代表介质属性的导磁率并不是一个常数,而是一个非线性函数,它不但与介质以及磁场强度有关,而且与温度还有关。因此,导磁率所定义的并不是一个简单的系数,而是人们正在利用它来掩盖住人类至今还没有揭示的,磁场强度与电磁感应强度之间的内在关系。不过为了简单,当我们对磁场强度与电磁感应强度进行分析的时候,还是可以把导磁率当成一个常数来看待,或者取它的平均值或有效值来进行计算。
如果能忽略涡流影响,则磁场强度H的平均值取决于导磁体材料的性质。变压器初级线圈内的磁化电流的增长与H成正比。在特性曲线的直线段内磁场强度H、磁化电流和磁通密度B都以线性变化。脉冲电压作用结束后(t>τ),变压器中的磁化电流将按变压器的输出电路特性,即电路参数确定的规律下降,变压器铁芯内的磁场强度和磁通密度也相减弱,此时变压器线圈内产生反性电压,即反电动势。变压器的输出电路特性实际上就是章中已经详细介绍过的正、反激电压输出电路特性。